AI Model Optimization Methods: Balancing Customization and Training Data Requirements

Need for customization increases (from Prompt Engineering to Instruction Fine-tuning), so does the requirement for extensive training data.

In the realm of AI, model optimization is a crucial step to tailor AI systems for specific use cases. However, the level of customization needed often correlates with the amount of training data required. Hereโ€™s a brief overview of four key model optimization methods, illustrated with a graph: ๐Ÿ“Šโœจ

๐Ÿญ. ๐—ฃ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด โœ๏ธ

๐——๐—ฒ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฝ๐˜๐—ถ๐—ผ๐—ป: This method leverages zero-shot or few-shot learning to guide the AI model’s responses using well-crafted prompts.
๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ: Asking a language model to write a poem with a prompt like “Write a poem about autumn leaves.”
๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€: Both proprietary models like Gpt-4o & open source models like Llama 3.1
๐—ง๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ฅ๐—ฒ๐—พ๐˜‚๐—ถ๐—ฟ๐—ฒ๐—บ๐—ฒ๐—ป๐˜: Low
๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น: Low to Medium

๐Ÿฎ. ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น ๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป (๐—œ๐—ป-๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด) ๐Ÿ”

๐——๐—ฒ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฝ๐˜๐—ถ๐—ผ๐—ป: Uses external databases to fetch relevant information, enhancing the model’s responses by providing additional context.
๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ: A chatbot retrieving real-time data from Wikipedia to answer a user’s query about recent events.
๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€: Both proprietary models like Gpt-4o & open source models like Llama 3.1
๐—ง๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ฅ๐—ฒ๐—พ๐˜‚๐—ถ๐—ฟ๐—ฒ๐—บ๐—ฒ๐—ป๐˜: Medium
๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น: High

๐Ÿฏ. ๐—ฃ๐—ฎ๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜๐—ฒ๐—ฟ ๐—˜๐—ณ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜ ๐—™๐—ถ๐—ป๐—ฒ ๐—ง๐˜‚๐—ป๐—ถ๐—ป๐—ด (๐—ฃ๐—˜๐—™๐—ง) ๐Ÿ› ๏ธ

๐——๐—ฒ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฝ๐˜๐—ถ๐—ผ๐—ป: Adjusts the prompts given to the model without changing the underlying weights, using soft prompts that act as placeholders for the desired output. Techniques like LoRA, Soft Prompts
๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ: Customizing a customer service bot to handle specific types of queries without retraining the entire model.
๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€: Both proprietary models like Gpt-4o & open source models like Llama 3.1
๐—ง๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ฅ๐—ฒ๐—พ๐˜‚๐—ถ๐—ฟ๐—ฒ๐—บ๐—ฒ๐—ป๐˜: Medium to High
๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น: Medium to High

๐Ÿฐ. ๐—œ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—™๐—ถ๐—ป๐—ฒ-๐˜๐˜‚๐—ป๐—ถ๐—ป๐—ด โš™๏ธ

๐——๐—ฒ๐˜€๐—ฐ๐—ฟ๐—ถ๐—ฝ๐˜๐—ถ๐—ผ๐—ป: Involves adjusting the weights of the modelโ€™s training parameters to better fit the specific use case.
๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ: Retraining a language model on a large dataset of medical literature to create a specialized medical assistant.
๐— ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€: Only open source models like Llama 3.1
๐—ง๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ฅ๐—ฒ๐—พ๐˜‚๐—ถ๐—ฟ๐—ฒ๐—บ๐—ฒ๐—ป๐˜: High
๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น: Very High

By understanding these methods, we can make informed decisions on how to optimize AI models effectively based on our specific needs and available training data. ๐Ÿ”ง๐Ÿ’ก

Leave a Comment

Your email address will not be published. Required fields are marked *

×